Varför sitter ett spänn på skrovet framför svansplanen på Hawk-flygplanet?

6

Varför sätts ett slynge på skrovet framför svansplanen på Hawk-flygplanet?

    
uppsättning Adder 05.03.2016 06:33

2 svar

4

De kallas Tailplane Canard Vanes (TCV) eller sidmonterade bakre fenor (smurfar). I grund och botten är de virvelgeneratorer för att lösa problemet med bakplattan under ytan i höga (negativa) vinklar.

Under flygningstestning av Hawk fann man att svängplanet under ytan stall orsakade okontrollerbar näsa nedåt. Från Hawk Story:

It was found that at forward centre of gravity in that configuration, rapid fore-and-aft movement of the control column could induce an uncontrollable nose down pitch, with the nose down attitude and speed increasing quite rapidly. ... It was dubbed the “Phantom Dive”.

Designarna fixerade det initialt genom att ta bort flikens utombordskena; En bättre lösning var emellertid nödvändig, och detta uppnåddes genom att placera en hålplans-kaninvinge framför stabilisatorn. TCV: erna skapade en voretx som säkerställde att kontrollytorna var effektiva genom att förhindra separering. Bilden nedan visar förbättringen.

Bildfrån Hawk Story:

Tillägget av TCVs löste problemet med svansplanet under ytan. Från samma dokument:

With tail and TCV on, there is ample tailplane authority with aft stick (- $\eta_{T}$ ) at all angles of attack in the usable range.

The addition of TCVs was a cheap and effective solution of the problem of tailplane under surface stall, and allowed further development of the wing to try to achieve the low stalling speeds demanded for carrier operation in the US Navy, and for combat versions of the aircraft carrying heavy store loads.

Papperet innehåller en hel del ytterligare detaljer om hur man löser detta problem, och jag föreslår att du går igenom det. Enligt RAF Aircraft & Vapenhandbok , modificaiton införlivades på Hawk T2.

    
svaret ges 05.03.2016 12:40
6

Du kanske har noterat att Hawk's tailplane är en fullflygande yta, även kallad en rörlig yta. När staven dras bakåt, kommer framkanten att röra sig mot sträcken, vilket i praktiken bildar en framkantstillägg . Detta kommer att producera en virvel över innerplattans nedre yta och förhindra tidig flödesseparation vid bakplattan i låg hastighet.

Den uppenbara följande frågan är: Varför är det inte en del av självplansplanen själv? Lägga till det i svansplanet skulle öka drag och producera olinjära styrkor. Eftersom det tillsattes senare i designens livstid, fixerades det till skrovet som var tillåtet för att hålla svansytorna och deras påverkan oförändrade.

Observera att tidiga Hawk-versioner (Mk.1, Hawk 50) saknade denna detalj. Vid flygprovning konstaterades att höken plötsligt skulle näsa med fulla flikar och växla upp. Detta kallades "fantomdyk". Skärning av flikarna löste det beteendet, men senare krävde tyngre versioner av Hawken mer hiss, så en annan fix skulle behövas. Från Hawk-historien av Harry fraser-Mitchell:

It was shown with the half model of the Hawk at Hatfield that high local downwash at the tail, coupled with the very large nose down pitching moment induced by the flap, was causing the tailplane to stall on its lower surface, so that it could no longer provide adequate balancing power. It needed more lift, extended to higher angles of attack.

In the case of the F-4K Phantom aircraft this was achieved by installing a fixed leading edge slot to the tailplane, harking back to demonstrations of such devices by Handley Page on wings in the early Twenties! A fixed slot with its associated drag was not an option on the Hawk although a cambered tailplane was tried on the model with some success. Removal of the outboard vane of the flap reduced the flap pitching moment to such a value that the standard tailplane could cope, so this was the quick solution for the RAF. However, for the US Navy VTX project, (and for later combat versions of the Hawk) the maximum possible lift was required, so that at least the outer flap vane had to be replaced. The dive phenomenon had to be fixed.

An example of the cross-fertilization of knowledge due to the matrix working of the design department now occurred. Barry Pegram, then Section leader of the Fluid Dynamics section of the Aerodynamics Department, had been working on the adoption of leading edge root extensions (LERX) for the “Harrier” wing, and this work had shown that these devices extended the lift of the wing to higher angles of attack by virtue of the non-linear lift developed by the vortex flow they created. He proposed that these should be added to the tailplane of the Hawk model, but this would have had a serious effect on the tailplane hinge moments. The author, who was working with Barry in the V/STOL tunnel at Hatfield, suggested that the ‘tailplane canard vane’ (TCV), as it was called, could be fixed to the fuselage at such a position that it was lined up with the flow at normal conditions, but with its trailing edge adjacent to, with a small clearance, the leading edge of the tailplane at its maximum nose down position.

Experimenting showed that these vanes could be made quite small and they gave a complete cure to the problem in the wind tunnel, with very little drag in the normal flight regime. To prove the concept in flight, some temporary vanes were manufactured which could rapidly be fitted to one of the test aircraft which had flaps with the full vane. First, the aircraft was flown without the TCV to establish the conditions under which the ‘Phantom Dive’ occurred on that particular aircraft. On a later flight, the TCVs were fitted and the aircraft flown again to the identical conditions as before. Despite every attempt by the pilot to instigate the phenomenon, it did not occur – the vanes were a complete success, even though they looked inconspicuously small for such a large effect.

    
svaret ges 05.03.2016 12:38